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The Feynman rules are derived for massless particles of arbitrary spin j . The rules are the same as those 
presented in an earlier article for m>0, provided that we let m —•» 0 in propagators and wave functions, and 
provided that we keep to the (2y+l)-component formalism [with fields of the (j,0) or (OJ) type] or the 
2 (2y+l)-component formalism [with (j,0) ®(0 j ) fields]. But there are other field types which cannot be 
constructed for m = 0; these include the (j/2,j/2) tensor fields, and in particular the vector potential for 
j=l. This restriction arises from the non-semi-simple structure of the little group for m = 0. Some other 
subjects discussed include: T, C, and P for massless particles and fields; the extent to which chirality con­
servation implies zero physical mass; and the Feynman rules for massive particles in the helicity formalism. 
Our approach is based on the assumption that the S matrix is Lorentz invariant, and makes no use of 
Lagrangians or the canonical formalism. 

I. INTRODUCTION 

THIS article will develop the relativistic field theory 
of massless particles with general spin, along the 

lines followed in an earlier work1 on massive particles. 
Our chief aim is, again, to derive the Feynman rules. 

We assume that the S matrix can be calculated from 
Dyson's formula 

oo ( - * ) » r 
S= E / &xv * -&xnT{30(xi) • • -30(xn)} . (1.1) 

w=o nl J 

Here, 30(x) is the interaction energy density in the 
interaction representation. In general, it would be the 
00 component ^(x) of a tensor ^"(x), but in order 
that 5 be Lorentz-invariant it is necessary that ^(x) 
be of the form 

r^(x) = -g^30(x)} (1.2) 

with 30 (x) a scalar. Lorentz invariance also dictates that 
30, (x) commute with 30 (y) for x—y space-like, in order 
that the 9 functions implicit in the time-ordered product 
in (1.1) not destroy the Lorentz invariance of S. 

We also assume that 30 (x) is built out of the creation 
and annihilation operators of the free particles appear­
ing in the unperturbed Hamiltonian. In order that 30 (x) 
transform properly we construct it as an invariant 
polynomial in various free fields ^ n (#) , which behave as 
usual under translations, and which transform according 
to various representations of the homogeneous Lorentz 
group 

UlA^n(x) ^ [ A j - ^ E DnnlA-^m(Ax). (1.3) 

In order that 30 (x) commute with itself outside the 
light cone, we require that the \pn(%) have causal 
commutation or anticommutation rules: for x—y space­
like, 

fyn(*),+fn(y)l± = 0. (1.4) 
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1 S. Weinberg, Phys. Rev. 133, B1318 (1964). 

These assumptions will be sufficient for all our pur­
poses. In particular, we will have no need of Lagrangians 
and the canonical formalism, nor will we need to start 
with any preconceptions about the form or even the 
existence of the field equations. 

We begin in Sec. I I with a review of the transforma­
tion properties of massless particle states and creation 
and annihilation operators. This information is used in 
Sees. I l l and IV to construct (2y+l)-component fields 
transforming according to the (j,0) and (Q,j) repre­
sentations. Condition (1.4) is used in Sec. V to complete 
the construction of the fields, and t o prove the spin-
statistics theorem and crossing symmetry. The Feynman 
rules are presented in Sees. VI, VII, and VIII. The 
inversions P, C, and T are discussed in Sec. IX. 

In Sec. X we attack a separate problem: To what 
extent does chirality conservation guarantee the exist­
ence of a particle of zero physical mass? Our conclusion 
[for general i ^ J ] is that this theorem can probably 
only be proved in the context of perturbation theory. 
But if parity as well as chirality is conserved, then it is 
possible to prove the nonexistence of a nondegenerate 
particle of finite mass. 

The chief conclusion of this work is that the Feynman 
rules for massless particles in the (2^+1) -component or 
2(27+l)-component formalisms are precisely the same 
as for m>0, except, of course, that we must pass to the 
limit m —> 0 in wave functions and propagators.2 In this 
limit it becomes impossible to produce or destroy 
particles with helicity other than ztj. 

But there is still one important qualitative distinction 
between m = 0 and m>0. We prove in Sec. I l l that not 
all of the field types which can be constructed out of the 
creation and annihilation operators for m>0 can be so 
constructed for m=0. Specifically, the annihilation 
operator for a massless particle of helicity A and the 

2 This conclusion is in agreement with the theorem that the 
decomposition of the S matrix into invariant amplitudes takes the 
same form for m = 0 and m>0, proven by D. Zwanziger, Phys. 
Rev. 133, B1036 (1964). Neither Zwanziger's work nor the present 
article offer any understanding of the fact that photons and 
gravitons interact with conserved quantities at zero-momentum 
transfer. This point will be the subject of further articles, to be 
published in Phys. Letters and in Phys. Rev. 

B882 



F E Y N M A N R U L E S F O R A N Y S P I N . I I . M A S S L E S S P A R T I C L E S B883 

creation operator for the antiparticle with helicity —A 
can only be used to form a field transforming as in (1.3) 
under those representations (A,B) of the homogeneous 
Lorentz group such that X = B—A. This limitation 
arises purely because of the non-semi-simple structure of 
the little group for m — 0. The difficulties (indefinite 
metric, negative energies, etc.) encountered in previous 
attempts to represent the photon by a quantized vector 
potential A^ix) can therefore now be understood as due 
to the fact that such a field transforms according to the 
(i>§) representation, which is not one of the repre­
sentations allowed by the theorem of Sec. I l l for 
helicity \ = ± 1 . On the other hand, the (j,0) and (0,j) 
representations used in this article (corresponding for 
j= 1 to the field strengths) are allowed by our theorem, 
and they cause no trouble.3 In a future article we shall 
show that it is in fact possible to evade our theorem, 
and that the Lorentz invariance of the S matrix then 
forces us to the principle of extended gauge invariance. 

In Ref. 1 we gave the Feynman rules for initial and 
final states specified by the z components of the massive 
particle spins. In order to facilitate the comparison with 
the case of zero mass, and for the sake of completeness, 
we present in Sec. VIII the corresponding Feynman 
rules in the helicity formalism of Jacob and Wick.4 The 
external-line wave functions are much simpler, though 
of course the propagators are the same. 

II. TRANSFORMATION OF STATES 

The starting point in our approach is a statement of 
the Lorentz transformation properties of massless par­
ticle states. The transformation rules have been com­
pletely worked out by Wigner,6 but it will be convenient 
to review them here, particularly as there are some little 
known but extremely important peculiarities that are 
special to the case of zero mass. 

Consider a massless particle moving in the z direction 
with energy K. It may have several possible spin states, 
which we denote | X), the significance of the label X to be 
determined by examining the transformation properties 
of these states. Wigner defines the "little group" as the 
subgroup of the Lorentz group consisting of all homo­
geneous proper Lorentz transformations (ft", which do 
not alter the four-momentum k* of our particle. 

Wvk
v=k% (2.1) 

# = # = 0; kz = k°=K. (2.2) 
3 As a case in point, there does not seem to be any obstacle to the 

construction of field theories for massless charged particles of 
arbitrary spin j , provided that we use only proper field types, like 
(jfi) or (OJ). The trouble encountered for j"^l by K. M. Case 
and S. G. Gasiorowicz [Phys. Rev. 125, 1055 (1962)], can be 
ascribed to their use of improper field types, such as (J , | ) . We plan 
to discuss this in more detail in a later article on the electro­
magnetic interactions of particles of any spin. 

4 M . Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959). 
5 E. P. Wigner, in Theoretical Physics (International Atomic 

Energy Agency, Vienna, 1963), p. 59. 

The states |X) must furnish a representation of the 
little group. That is, the unitary operator U[_(S(] corre­
sponding to (ft",, does not change the momentum of the 
states | A), and thus must just induce a linear trans­
formation : 

^M|xHL^M|x'>, (2.3) 
y 

with 
E 4x-[(fti]4-v[(R2]=4v[(fti(ft2]. (2.4) 
X " 

Therefore, we can catalog the various possible spin 
states | A) by studying the representations d[(ft] of the 
little group. 

This is most easily accomplished by examining the 
infinitesimal transformations of the little group. They 
take the form 

(R%=8%+Q^y (2.5) 

where A", is infinitesimal and annihilates k: 

Wvk
v=0. (2.6) 

In order that (2.5) be a Lorentz transformation we must 
also require that 

8*'=—S2"1, (2.7) 

the index v being raised in the usual way with the metric 
tensor g"", defined here to have nonzero components: 

gn=g2 2=g3 3=l, g 0 0 = - l . (2.8) 

Inspection of (2.6) and (2.7) shows that the general ft"" 
is a function of three parameters 0, Xh X2, with nonzero 
components given by 

a1 2=-O2 1=0, (2.9) 

8io = ^^i=^n = - S P = Xi, (2.10) 

&20=-ft02=&23=-O32=X2. (2.11) 

The Lie algebra generated by these transformations can 
be determined by recalling the algebra generated by the 
full homogeneous Lorentz group, of which the little 
group is a subgroup. An infinitesimal Lorentz trans­
formation AM„ can be written as in (2.5), with 12^ subject 
only to (2.7). The corresponding unitary operator takes 
the form 

D r [ l + 0 ] = l + ( f / 2 ) ^ ' / | l „ (2.12) 

J [XV~ J VH~ J fXV* • \Z.lo) 

It is conventional to group the six components of J„v 

into two three-vectors: 

Ji—2ei3kJjk, (2.14) 

Ki=JiQ——Joi, (2.15) 

file:///Z.lo
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with commutation rules 

[_Ji,Jj] = itijkJk, (2.16) 

[_Ji,Ki]-=ieijkKkl (2.17) 

[_KhK^-ieijkJk. (2.18) 

We see that the unitary operator corresponding to the 
general infinitesimal transformation (2.9)-(2.11) of the 
little group is 

U[(R(d,XhX2)li=l+idJz+iX1L1+iX2L2y (2.19) 

where 
Ll^Kx-J2, (2.20) 

L^KZ+JL (2.21) 

The commutation rules for the three generators of the 
little group are given by (2.16)-(2.18) as 

[ / 8 , i i ] = ^ 2 , (2.22) 

UM=-iLu (2.23) 
[Li,L2] = 0. (2.24) 

We can now find all the representations of the little 
group by finding the representations of this Lie algebra. 
But it strikes one immediately that this algebra is not 
semi-simple because the elements L\ and L2 form an 
invariant Abelian subalgebra. [ In fact, Wigner5 points 
out that (2.22)-(2.24) identify this algebra as that of all 
rotations and translations in two-dimensions, a fact of 
no known physical significance.] In order that the states 
| A) form a finite set, it is necessary to represent the 
"translations" by zero, i.e., 

Li|X> = £2|X> = 0 . (2.25) 

Therefore, a general (SWV in the little group transforms 
| X) into 

Z7[(R] | X) = exp{i@[(R]/3} | X), (2.26) 

the angle 0[(R] being some more or less complicated 
real function of the 6V%, which is given for infinitesimal 
(R by (2.19) as 

0[<R(0,Xi,X2)]->0. (2.27) 

If we now identify the states |X) as eigenstates with 
definite helicity X, 

/8 |X)=X|X>, (2.28) 

we see that the physically permissible irreducible repre­
sentations of the little group are all one dimensional: 

tf[(R]|X) = exp{;X@[(R]}|X>. (2.29) 

Comparing with (2.3) and (2.4) shows that 0 must 
satisfy the group property 

0 [ ( R i ] + 0[(R2] = 0[(Ri(R2]. (2.30) 

For global reasons it is necessary to restrict the 
helicity X to be a positive or negative integer or half-
integer dbj. We define a right- or left-handed particle of 

spin j ^ O as one with helicity X equal to +j or —j, 
respectively. 

I t is, of course, very well known that a spinning 
massless particle need not occur in more than one spin 
state (or two, if parity is conserved). The restriction 
(2.25) is much less familiar, but we shall see that it is 
responsible for the dynamical peculiarities of massless 
particle field theories. 

A particle of general momentum p and helicity X may 
now be defined by a Lorentz transformation 

|p ,X>=Mp| ] 1 / 2 t f [£ (p) ] |X>, (2.31) 

where £7[<£(p)] is the unitary operator corresponding to 
the Lorentz transformation £ / ( p ) which takes our 
"standard" four-momentum k* into p*\ 

# " = { p , | p | } ; k"={o,o,K,K,}. 

There are various ways of making the definition of <£ (p) 
unambiguous, but we will find it convenient to define <£ 

a S &,(j>) = R"x@)B\(\p\). (2.33) 

Here, B( j p | ) is a "boost" along the z axis with nonzero 
components 

S I I ( I P I ) = 5 M I P I ) = I , 
^ 3 3( |p | ) = 5°o( |p |) = cosh0( |p | ) , (2.34) 

^ 3 o( |p | ) = 5°3( |p |) = s inh^( |p | ) , 

0 ( | p | ) = l n ( | p | A ) . (2.35) 

Since B^v takes &M into {0,0, | p | , | p | }, we choose R(p) as 
the rotation (say, in the plane containing p and the z 
axis) which takes the z axis into the unit vector 
P = P/1PI • The factor [_K/ | p | ] 1 / 2 is inserted in (2.31) to 
keep the normalization conventional, 

<p',X'|p,XH$3(p-p')Sxv. (2.36) 

Having defined helicity states of arbitrary momentum 
in terms of states | X) of a fixed standard four-momentum 
&M, it is now quite easy to find their transformation 
properties. A general Lorentz transformation A^, repre­
sented on Hilbert space by a unitary operator £7[A], 
will transform | p,X) into 

tf[A]|p,X> 

= [K/ |p | ] 1 / 2 t f [AM£(p) ] |X> 
= [«/1PI J/2Ut£ ( A p ) ] ^ - 1 (Ap)A£ (p)] | X). (2.37) 

But the transformation JB-1 (Ap)A£ (p) leaves k>* un­
changed, and hence belongs to the little group. Equation 
(2.29) then lets us write (2.37) as 

^ [ A ] | P , X H [ * / I P | ] 1 / 2 

Xexp{iX0[£-1(Ap)A£(p)]}Z7[£(Ap)] | X), 
and finally 

tf[A]|p,X>=[|Ap|/|p|]1/2 

Xexp{iX©[£-1(Ap)A£(p)]} |Ap,X). (2.38) 
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A general state containing several free particles will 
transform like (2.38), with a factor [ | p' | /1PI ]17V® x for 
each particle. These states can be built up by acting on 
the bare vacuum with creation operators a* (p,X) which 
satisfy either the usual Bose or Fermi rules: 

[a(p,X),a*(p',X0]±=5xv53(p-p'), (2.39) 

so the general transformation law can be summarized 
in the statement 

^CA>*(p,X)J7-1[A] = [ | A p | / | p | ] ^ 
Xexp{iX0[£-1(Ap)A£(p)]}^*(Ap,X). (2.40) 

Taking the adjoint and using the property [see (2.30)] 

0 [ # ] = _ © [ £ - ! ] (2.41) 

gives the transformation rule of the annihilation 
operator 

J 7 [ A > ( p , X ) ^ [ A ] = [ | A p | / | p | ] ^ 
Xexp{iX@[£-1(p)A-1£(Ap)]}a(Ap,X). (2.42) 

We speak of one massless particle as being the anti-
particle of another if their spins j are the same, while 
all their charges, baryon numbers, etc., are equal and 
opposite. Whether or not every massless particle has 
such an antiparticle is an open question, to be answered 
affirmatively in Sec. V. But if an antiparticle exists, 
then its creation operator b*(p,\) will transform just 
like a*(p,X), and b*(py —X) will transform just like 
a(p,X): 

J7[A>*(p, - X ^ M K l A p l / l p l ] ^ 

Xexp{iX0[£-1(p)A-1£(Ap)]}6*(Ap, - X ) . (2.43) 

If a particle is its own antiparticle,6 then we just set 
b(p,\) = a(p,\). 

III. A THEOREM ON GENERAL FIELDS 

As a first step, let us try to construct the "annihilation 
fields" ^» ( + )(#; X), as linear combinations of the annihi­
lation operators a(p,\), with fixed helicity X. We require 
that the ^ n

( + ) transform as usual under translations 

C ^ ^ n ( + ) ( * ; X ) ] = a ^ » ( + ) ( * ; X ) (3.1) 

and transform according to some irreducible represen-

6 It is not so obvious what is meant by a massless particle being 
its own antiparticle. If charge conjugation were conserved, then 
we would call a particle purely neutral if it were invariant (up to a 
phase) under C. But if we take weak interactions into account then 
only CP and CPT are available, and they convert a particle into 
the antiparticle with opposite helicity. For massless particles there 
is no way of deciding whether a particle is the "same" as another 
of opposite helicity, since one cannot be converted into the other 
by a rotation. This point has been thoroughly explored with regard 
to the neutrino by J. A. McLennan, Phys. Rev. 106, 821 (1957) 
and K. M. Case, ibid. 107, 307 (1957). See also C. Ryan and S. 
Okubo, Rochester Preprint URPA-3 (to be published). Even if a 
massless particle carries some quantum number (like lepton 
number), we can still call it purely neutral if we let its quantum 
number depend on the helicity; however, in this case it seems more 
natural to adopt the convention that the particle is different from 
its antiparticle, with &(p,X)?*a(p,X). 

tation Z)[A] of the homogeneous proper orthochronous 
Lorentz group: 

£/LA>»(+)(*;X)^CAJ-1 

= E DnmLA-^J+> (Ax; X). (3.2) 
m 

I t is well known that the various representations 
D[_K~\ can be cataloged by writing the matrices J and K, 
which represent the rotation generator J and the boost 
generator K as 

J=A+B; K=-i(A-B). (3.3) 

Since J and K satisfy the same commutation rules 
(2.16)-(2.18) as J and K, the A and B satisfy decoupled 
commutation rules 

AXA = iA; BXB^iB, 

[a*,(Bj=o. 

The general (2^ + l)(2£+i)-dimensional irreducible 
representation (A,B) is conventionally defined for inte­
ger values of 2A and IB by 

Aab,a'b'~8bb'3aa'(A) , 

Bab,a'b'~?>aa>Jbb^B) , 

where a and b run by unit steps from —A to -\-A and 
from —B to +B, respectively, and J(j) is the usual 
2j+1-dimensional representation of the angular mo­
mentum 

For massive particles of spin j , we have already seen 
in Sec. VIII of Ref. 1 that a field \pw (%) can be con­
structed out of the 2 ^ + 1 annihilation operators #(p,<r), 
which will satisfy the transformation requirements (3.1) 
and (3.2), for any representation (A,B) that "contains" 
j , i.e., such that 

j=A+B or A+B-l or • • • or \A-B\. (3.7) 

[A spin-one field could be a four-vector ( | ,J) , a tensor 
(1,0) or (0,1), etc.] We might expect the same to be true 
for mass zero, but this is not the case. We will prove in 
this section that a massless particle operator a(p,\) of 
helicity X can only be used to construct fields which 
transform according to representations (A,B) such that 

B~A=\. (3.8) 

For instance, a left-circularly polarized photon with 
X= —1 can be associated with (1,0), ( f , | ) , (2,1), ••• 
fields but not with the vector potential ( | ,J) , at least 
until we broaden our notion of what we mean by a 
Lorentz transformation. I t will be seen that the restric­
tion (3.8) arises because of the non-semi-simple structure 
of the little group. 
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The condition (3.1) requires that\^n
(+) be constructed 

as a Fourier transform 

1 

(2TT)3'2 

r d*p 
X / eip-a&(p,X)«„(p,X), (3.9) 

J L2\P\J12 

the factor (2TT)~8/2[2 | p | ] _ 1 / 2 being extracted from the 
"wave function" «»(p,X) for later convenience. The 
condition (3.2) together with the transformation rule 
(2.42) then requires that un(p,\) satisfy 

exp{^X@[£-1(p)A-1£(Ap)]}^ri(p,X) 

= EA l m[A- 1 > m (Ap,X) . (3.10) 
m 

We will now show that this determines um(p,\) uniquely. 
In particular (3.10) must be satisfied if we choose 

p=k^{0,0,/c};A=£(q), 

where q is some arbitrary momentum. In this case (3.10) 
reads 

^ ( q , X ) = E /?»«[£ (q)]«m(X), (3.11) 
m 

where um(\) is the wave function for our "standard" 
momentum k 

«m(X)=«m(k,X). (3.12) 

Insertion of (3.11) into both sides of (3.10) shows that 
(3.10) is satisfied by (3.11) if and only if the um(X) 
satisfy 

exp{iX@[£-1(p)A-1£(Ap)]}E^m[c£(p)>m(X) 
m 

= E£,»m[A-1£(Ap)>m(X), 

m 

or in other words, if and only if 

£ J5»«[(R]««(X) = exp{ixe[(R]}«„(X) (3.13) 

m 

for any Lorentz transformation (R of the form 

(R = £-1(p)A-1£(Ap). (3.14) 
But these (ft's, for general p and A, just constitute the 

little group discussed in Sec. II. In order that (3.13) be 
satisfied for all such (R it is necessary and sufficient that 
it be satisfied for all infinitesimal transformations 

(R^ ,=^+^0 ,Xi ,X 2 ) , (3.15) 

the nonvanishing components of ft being given by 
(2.9)-(2.11). The matrix £>[(R] corresponding to (3.15) 
is obtained by replacing J and K in (2.19) by their 

matrix representatives J and K: 

Z>[(R(^X 1 ,X 2 ) ]=l+^8+iX 1 (3Ci-^ 2 ) 
+iX2(X2+Si), (3.16) 

or, using (3.3), 

J9[(R(6>,x1,x2)]-i+i6/(a3+(B3)+(x1+ix2)(ai-ia2) 
+ (Xx-iX2)((Bi+i(B2). (3.17) 

Recalling from (2.27) that @->0, our condition (3.13) 
is now split into three independent conditions: 

[G8+(B8>(X) = X«(X), (3.18) 

[a1-ia2]u(\)=o, (3.19) 

[(Bi+i(B2>(X) = 0. (3.20) 

Of these three conditions, (3.18) could certainly have 
been anticipated as necessary to a field of helicity X. The 
other two arise from the detailed structure of the little 
group, but are equally important, for they force u(\) to 
be an eigenvector of a 3 and (B3, with 

azu(\) = -Au(\), (3.21) 

(^zu(\) = +Bu(X), (3.22) 

or more explicitly 

UabQO = 8a,-Adb,B. (3.23) 

Using (3.18) now gives the promised restriction on A 
and B: 

-A+B=\. (3.8) 

For a left-handed particle with X=— j , the various 
possible fields are 

[left] (j,0), ( i + J , i ) , ( i + 1 , 1 ) , • • • , (3.24) 

while a right-handed particle with \=+j can be as­
sociated with a field transforming like 

[right] (0,i), (!, i + | ) , (1, i + 1 ) , • • •. (3.25) 

If parity is conserved, then the particle must exist in 
both states \=±j, and the field must then transform 
reducibly, for example, like (jfi)®(0J). 

Our theorem certainly applies to the in and out fields, 
since they are constructed just like free fields. I t must 
then also apply to the Heisenberg representation field 
that interpolates between in and out fields if we insist 
that they all behave in the same way under Lorentz 
transformations. Furthermore, the only "M functions"7 

that can generally be formed from the S matrix are those 
corresponding to the representations (3.24) and (3.25). 

In a forthcoming article we shall see what goes wrong 
when we try to construct a field with A and B vio­
lating (3.8). 

7 H. Stapp, Phys. Rev. 125, 2139 (1962); A. O. Barut, I . 
Muzinich, and D. N. Williams, ibid. 130, 442 (1963). 
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IV. (2y+l)-COMPONENT FIELDS 

For a left- or right-handed particle with \=—j or 
\=+j, the simplest field type listed in (3.24) or (3.25) 
is, respectively, (jfi) or (0,j). The corresponding 
(2j +1) -component annihilation fields will be called 
<pff

w(x) and Xff<+>(s). They are given by (3.9), (3.11), 
and (3.23), as 

1 r dH 

W 2 J [_2\V\Jl* 

X ^ ' * Z W y ) [ £ ( p ) > ( P , - i ) , (4.1) 

( 2 7 r W [2|p|]1 / 2 

Xe*-*Dffj^£(p)Mv,J), (4.2) 

and they transform according to 

tf[A>,<+>(*)£/-i[X] = E DaaM\A-i-]<p^(Ax), (4.3) 
a' 

tf[A]X,<+>(*) tf-i[A]==X; 5ff<r/^[A-1]X(r,(+)(A^). (4.4) 

Here D^[_A] and S ^ A ] are the nommitary (2j+l) 
X(2y+l)-dimensional matrices corresponding to A in 
the (jfi) and (0,j) representations, respectively. They 
are the same as used in Ref. 1, and can be denned by 
taking (B=0 or ($=0, or, equivalently, by representing 
the generators J, K with 

D<»: /=J<>\ K=-iJM, (4.5) 

D">: 7=J">, K=+tJU>, (4.6) 

where J0 ) is the usual spin-j representation of the 
angular momentum, defined by (3.6). In particular, the 
transformation <£(p) defined by (2.33) is represented on 
Hilbert space by 

I7[£(p)] =[ / [£(£) ] exp{-^( |p | )X 3 } , (4.7) 

<K|p|) = l n [ | p | A ] , (2.35) 

and therefore the wave functions appearing in (4.1) and 
(4.2) are 

J W > D e ( p ) ] 

= EC' ( ' ) Ci2(^)Iexp{-^( |p | ) /3 ( '>} l ' , -y 
a' 

=D.^»tR(m<\j>\/KY, (4-8) 

= ZS^[2?(£)][exp{<K|p|)/3<>'>}>,y 

= D.Jt>tR$m\V\/K)t. (4.9) 

Note that the matrices D™[R2 and fiW[K] for a pure 
rotation R are both equal, being given by the familiar 
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2j+l-dimensional unitary representation8 of the ordi­
nary rotation group. [Note, also, that if we tried to 
construct a (jfi) field for a right-handed particle, or a 
(0,j) field for a left-handed particle, we would not only 
fail to get the desired Lorentz transformation property, 
but we would also find a catastrophic factor | p\~3' in the 
wave function.] 

Using the wave functions (4.8) and (4.9) in (4.1) and 
(4.2), the annihilation fields now take the form 

*,<+>(*) = / " W I P I ] * - 1 ' 2 

(2w)^J 
Xeto-'D^ZRlfiloto, ~j), (4.10) 

X,<+>(*)= /^ [2 |p | ]> ' - 1 / 2 

(2TT)WJ 

x«*-*zw»C*(£)>(p,i). (4.H) 
We have redefined their normalization by replacing the 
factor ic* by 23\ We see that only the ordinary unitary 
rotation matrices8 are needed; R(p) is the rotation that 
carries the z axis into the direction of p. 

If our particle has an antiparticle (perhaps itself), then 
there is available another operator &*(p, —X) which 
transforms just like #(p,X) Esee (2.43)], and which 
carries the same charge, baryon number, etc. It is then 
possible to define creation fields 

(2TT) 3 / 2 J 

Xe-to-'D^LRifilPfaJ), (4.12) 

(2TT) 3 / 2 J 

Xe-»'*D,t/t>ZR(fiy>*(P, - j ) , (4.13) 

which satisfy (3.1), which transform according to (4.3) 
and (4.4), respectively, and which also transform like 
<p(+) and x(+) under gauge transformations of the first 
kind. [For a "purely neutral" particle,6 6*(p,X) is to be 
replaced by a*(p,X).] 

The most general fields satisfying all these conditions 
are linear combinations of creation and annihilation 
fields. 

<P*(x) = £L<PS+) (*)+*? W " 0 (*), (4.14) 

*M = £BX^+> (x)+rjLX^ (x). (4.15) 

They again transform as in (4.3) and (4.4): 

£/[A>„(x)Dr"1[A] = E D^LA-^<p„,(Ax), (4.16) 

UlA]X„(x) f/-x[A] = E DC^ZA]X,, (Ax). (4.17) 

8 See, for example, M. E. Rose, Elementary Theory of Angular 
Momentum (J. Wiley & Sons, Inc., New York, 1957), p. 48 ff. 
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If these particles have no antiparticles (including them­
selves), then we have to take TJL^VR^®- We will see in 
the next section that, instead, requirement (1.4) (and 
hence the Lorentz invariance of the 5 matrix) dictates 
full crossing symmetry, with | rjR | = | £L |, | rjL | = | £R |. 

The fields obviously obey the Klein-Gordon equation 

• Vcr(*) = 0; n*X*(x) = 0. (4.18) 

However, they are (2^+1)-component objects con­
structed out of just two independent operators #(p,X), 
&*(p> " ^ ) j and so they have a chance of obeying other 
field equations as well. I t is not hard to see from 
(4.10)-(4.13) that they do indeed satisfy the additional 
field equations 

[ J ^ . V - i ( d / d O ] ^ W = 0 , (4.19) 

[ J<a-V+i (d /dO]x(*) = 0. (4.20) 

For j = J these are the Weyl equations for the left- and 
right-handed neutrino fields, while for j=l they are 
just Maxwell's free-space equations for left- and right-
circularly polarized radiation: 

V X [ E - ; B ] + i ( d / d / ) [ E - i B ] = = 0 , (4.21) 

V X [ E + i B ] - i ( d / a O [ E + i B ] = 0. (4.22) 

The fact that these field equations are of first order for 
any spin seems to me to be of no great significance, since 
in the case of massive particles we can get along per­
fectly well with (2^+1)-component fields which satisfy 
only the Klein-Gordon equation. 

V. CROSSING AND STATISTICS 

We are assuming that the a's and b's satisfy the usual 
commutation (or anticommutation) rules (2.39), so it is 
easy to work out the commutators or anticommutators 
of the fields <pa and Xa defined by (4.10)-(4.15): 

1 f dsp 

( 2 T T W 2(p| 

Xl\h\2eip-(x-y)±\vR\2e-ip-(x-y)l, (5.1) 

1 f d*p 

(2TT)3 J 2 | p | 

Xl\^R\2eip^-^db\vL\2e-ip'^-^, (5-2) 
where 

^(p) = \2p\^Vff,^ZR(m^,-/^R(m, (5.3) 

^Ap)=\2v\^Dff^lR{mD,'^XR(P)^ (5.4) 

These are the only nonvanishing commutators (or 
anticommutators) among the <p, cp\ x, and x1" (except 
for a "purely neutral" particle, in which case x is 
proportional to <pt; see Sec. IX). 
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The matrices w and ft can be easily calculated by use 
of the obvious formulas 

1 i 
5,,-^,-,= [ II (X- / 3 ) ]^ , (5.5) 

(2j)I x—m 

1 y-i 
^ . ^ . y = 7 — C I I ( / s - X ) ] ^ . (5.6) 

(2j)l x—/ 

Applying the rotation matrix DU)[_R(p)'] and multi­
plying by 12p |2? gives 

*(P)=TT rr (X^-P-J), (5.7) 
(2i)!x—/+i 

(2j) I x—y 

These are monomials of order 2j in the light-like four-
vector p», so (5.1) and (5.2) now become 

1 f d*p 

(2TT)* J 2 | p | 

l r d*p 
Lx*(x),xS(y)l±=T—*.A-id) / —T 

(2TT)3 J 2 | p | 

X [ | ^ | 2 6 ^ - ( ^ ) ± ( _ ) 2 / | 1 ? L | 2 e - ^ . ( a ; - y ) - j < ( 5 ^ ) 

In order that (5.9) and (5.10) vanish for x—y space­
like, it is necessary and sufficient that expp^- (x—y)'] 
and exp[—ip> (x—y)~] have equal and opposite coeffi­
cients 

| ^ | 2 = T ( - ) 2 ' | ^ | 2 , (5.11) 

| f c | * = = F ( - ) " | i » £ | » . (5.12) 

So we must have the usual connection between spin and 
statistics 

( ± ) = - ( - ) " , (5.13) 

and furthermore, every left- or right-handed particle 
must be associated, respectively, with a right- or left-
handed antiparticle (perhaps itself) which enters into 
interactions with equal strength: 

By redefining the phases of the a's and 6's, and the 
normalization of <p and x> we can therefore set 

^ L = : ^ L = ^ = = 1 7 i 2 = l (5.15) 

with no loss of generality. The fields are now in their 
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final form: 

(2TT) 3 / 2 J 

X[a(p , -j)e^+b^(pJ)e-^^7 (5.16) 

X.(x) = —— L*p[2 \v\y-ll2Dff,^lR(p)1 
(2TT)3/27 

X[a(p,i)«*p,aj+ft*(p, - 7 > ~ i p ' * ] . (5.17) 

The commutator or anticommutators are 

Zx0(x),XffJ(y)]± = iTrffff>(--id)A(x-y), (5.19) 

where iA(x—y) is the commutator for zero mass and 

y=o. 
— i r dzp 

A(ff) = / reiP'X—e-iP'X-\ 
{2*yj 2 | P | L 

= -(l/2Tr)d(xflx^)e(x). 

If a particle has no additive quantum numbers like 
the photon, we must6 set b(p,\) equal to #(p,X), and 
"causality" then tells us through (5.14) that the particle 
must exist in both left- and right-handed helicity states. 
Both fields <pff(x) and Xa(x) can be constructed, and in 
fact we shall see in Sec. I X that <p is just proportional 
to X

f . 
On the other hand, a particle which carries some 

additive quantum number that distinguishes it from its 
antiparticle can possibly exist in only the left- or the 
right-handed helicity state, and "causality" only re­
quires that it has an antiparticle of opposite helicity. 
(A familiar example is the neutrino.) In this case only 
one of the fields <pa and Xa can be constructed. Of course, 
if parity of charge conjugation are conserved, then both 
particle and antiparticle must exist in both left- and 
right-handed states, and both <pff and Xff exist. 

VI. LORENTZ INVARIANCE 

Our formulas (5.18) and (5.19) for the commutators 
or anticommutators were derived in a Lorentz invariant 
manner, but they do not look like invariant equations. 
I t will be necessary to see how their invariance comes 
about before we are able to derive the Feynman rules. 

I t was shown in Appendix A of Ref. 1 that the 
familiar angular momentum matrices JU) can be used to 
construct a pair of scalar ( 2 j + l ) X (2^+1) matrices II 
and II, as monomials in a general four-vector q^: 

n „ ' ( g ) = ( - K / I M - W M W . • -qMi, (6.1) 

n*Aq) = (-)2ii**'>w'-'™qnqn' • -fey, (6.2) 
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with properties: 

(a) II and n are scalars, in the sense that 

D^lA]Ii(q)D^lA^=U(Aq), (6.3) 

5<0[A]H(g)S<0[A]t= fl(Ag). (6.4) 

(b) / and i are symmetric and traceless in /xiM2* • -M2j. 

(c) II and II are related by an inversion 

n(-q,g°') = nfa). (6.5) 
(d) II and H* are related by a similarity transformation 

n*fe)=cnfa)c-s (6.6) 
where 

- 3 ^ = CV^C-\ (6.7) 

(e) II and n are further related by 

n(q)n(q) = n(q)ll(q)=(-f)*>: (6.8) 

(f) If q is in the forward light cone then 

H(g)= (-q->ytxp[-2e(q)q-J^, (6.9) 

n(<?)= (-<z2) ' -exp[20(9)g-J^], (6.10) 

s inh%) = [ | q | 2 / - g 2 ] 1 / 2 . (6.11) 

(g) For integer j and arbitrary q 

n(fl(g)=(-g2) J-+[(_g2)y-y2!](2q.J(y'))(2q.J(»)-29°) 

+ [ ( _ g 2 ) ) - -2 / 4 G ( 2 q . j (y) ) [ ( 2 q . J ( / ) )2_(2 q )2] 

X [ 2 q - J « - 4 ? » ] + [ ( - g
2 ) ' - y 6 ! ] ( 2 q - J a > ) 

X[(2q- J<«)«- (2q)2][(2q. J<») 2 - (4q)2] 

X [ 2 q - J « > - 6 g » ] + - - - , (6.12) 
the series cutting itself off automatically after j-\-1 terms. 
(h) For half-integer j and arbitrary q 
n(«(g)=(_g2) )- l /2[g0_2q.J(/)]+(l /3!)(-g2) J--3/2 

X[(2q-J<'>)2-q2][3g°-2q-J<'>] 

+ ( l /5!)(-3 2)»- 6 / 2[(2q.J<«) 2-q 2] 

X[(2q-J<») 2-(3q) 2] 

X [ 5 g » - 2 q - J « ) ] + - - - , (6.13) 

the series cutting itself off automatically after j + f 
terms. 

I t follows from (6.12), (6.13), and (6.5) [or, more 
directly, from (6.9) and (6.10)] that for a light-like 
vector p" the monomials II and n simplify to 

n ( # ) = — rr (xi>°-P-j«), (6.i4) 
(2j)U=-y+i 

n(p)=~^- n (X^+P-J»>), (6.i5) 

(2j)!x=-,'+i 

or in terms of the matrices (5.7), (5.8) 
U^(p)=T^(p) [ f l ight- l ike] , (6.16) 
U^(p) = r^(p) [ f l ight- l ike] . (6.17) 



B890 S T E V E N W E I N B E R G 

The Lorentz invariance of formulas (5.18) and (5.19) 
for the commutators or anticommutators now follows 
immediately from (6.3) and (6.4). 

VII. THE FEYNMAN RULES 

The Hamiltonian density 3C (x) is to be constructed as 
an invariant polynomial in the (2j+1)-component fields 
<P<T(X) and Xa(x), without any distinction made between 
zero and nonzero mass. In each term of 3C(x) all a 
indices on the <pa{x) are to be coupled together to form a 
scalar, using Clebsch-Gordan coefficients in the familiar 
way. The same is to be done independently with the 
indices on the Xa(x), If adjoint fields enter in 5C(x) then 
Cff(r~

lX<Tr1'(x) is to be treated like (pff(x) and CV^"1^' (#)f 

is to be treated like Xff(x); the matrix C is defined by 

2)(i)[A]*=CJD^[A]C-1 , 

or more specifically, 

-]^*=C3^C-\ 

(7.1) 

(7.2) 

[We use an asterisk for the ordinary complex conjugate 
of a matrix.] If derivatives appear they will enter as a 
2X2 matrix: 

d^^a^^d/dx^-b^'id/dt), (7.3) 

where a1 are the usual Pauli spin matrices; the indices a 
and <ir are to be treated as if they appeared respectively 
on j=\ fields (pff and X^. 

We list below some typical examples of possible in­
variant terms in 3C(x): 

W " > ( « ) , (7-4) 

<t\<nviaz' \<J\ &2 &%' 

X *>.!<*> {x)<p„™ {x)Cw - * , / * > (x)t, (7.5) 

' \<7i (72 <r/\ff' CTa 0 / 

X ^ ^ (a) ^2
(>'2) (x)d0M*> (x), (7.6) 

etc. The fields <pa and Xa appearing here may be either 
of zero or of nonzero mass. 

The S matrix can be calculated from 3C(#) by using 
Wick's theorem to derive the Feynman rules, as we did 
in Sec. V of Ref. 1. The only additional information 
needed here is a statement of the wave functions 
corresponding to external mass zero lines, and a formula 
for the propagators corresponding to internal mass zero 
lines. 

The factor arising from the destruction or creation at 
x of a massless particle or antiparticle of helicity X= ± 7 
can be determined from (5.16) and (5.17) as the coeffi­
cient of the appropriate creation or annihilation opera­

t o r i n <pffJ Xai <pff
f, o r Xa

f: 

(27r)-3 /2(2|p|)^1 /2
JD,,x(^[ JR®>^-

[particle destroyed], (7.7) 

(27r)-3/2(2|p|)^1/2Z> f f,x^')[^(^)]^-^-
[particle created], (7.8) 

(2TT)-3 '2(2 I p | ^WD^MlRffly-**'* 

[antiparticle created], (7.9) 

(27r)- 3 / 2 (2 |p | )^/ 2P ( r^x 0 ' ) [^(^)]*^>-

[antiparticle destroyed]. (7.10) 

We remind the reader that DU)[K] is the usual (2j+l) 
X (2j+l) unitary matrix8 corresponding to an ordinary 
rotation R, and that R{p) is the rotation that carries the 
z axis into the direction of p. 

The "raw" propagator corresponding to an internal 
massless particle line running from x to y is 

(T{<p*(x),<Pc*(y)})o 
= 0(x-y)(<P<T(x)<p(rS(y))o 

+ {-Yje{y-x){<pS{y)<pa{x))^ (7.1D 
or 

(T{Xa(x),X^(y)})0 

=K*-y)(**(*W(y))* 
+ {-Yje{y-x){X^{y)Xa{x)),. (7.12) 

An elementary calculation using (5.16), (5.17), (5.3), 
(5.4), (6.16), and (6.17) gives the vacuum expectation 
values as 

(<p^x)<p„^(y))a=iHII<T,(—id)A+(x-y), 

(-)2 , ' (^ t(3 ')?».W)o=Jn„.(-i3)A+() i- i) , 

and 
(X<r(x)XirA(y))()=m^(-id)A+(x-y), 

(-)M<X^ t(y)X,(x)>o=«Il^(-td)A f(y-*), 

where 

1 r d3p 
iA+(x)= / eip'x 

(2x)»y 2|p| 

(7.13) 

(7.14) 

(7.15) 

(7.16) 

1 r i -1 
= ix5(x2)e(x) 
4TT2U2 J 

(7.17) 

As discussed in Ref. 1, the presence of the 6 functions 
in (7.11) and (7.12) makes these propagators non-
covariant at the point x=y, for spins j^l.In order that 
the S matrix be Lorentz invariant, it is necessary to 
assume that noncovariant contact interactions appear 
in 3C(x) which cancel the noncovariant terms in (7.11) 
and (7.12). (The Coulomb interaction in Coulomb 
gauge is such a contact interaction, made necessary by 
the unit spin rather than by the zero mass of the 
photon.) With this understanding, we can move the 
derivative operators II(—id) and n(—id) in (7.13)-
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(7.16) to the left of the 0 functions in (7.11) and (7.12), 
obtaining the propagators 

Sffo> (x-y) = - i l l , , ' (~id)Ac(x-y) 

X d ^ a - y ) , (7.18) 

S<ra>(x-y)=-m(X(T,(-id)Ac(x-y) 

X c W ^ - y ) , (7.19) 

where — iAc(#—3;) is the usual propagator for spin zero 
and mass zero 

— iAc(x) = id(x)A+(x)+id(—x)A+(—x) 

= +[ l /47r 2 (x 2 +ie ) ] . (7.20) 

Equations (6.3) and (6.4) show that these propagators 
are covariant in the sense that 

D^ZA]S(x)D^[Aj = S(Ax), (7.21) 

D^l\]S(x)D^lAj^S(Ax). (7.22) 

The propagators in momentum space are given by the 
Fourier transforms of (7.18) and (7.19) 

S(q)= [d*xei(f*S(x) = -m(q)/q2-ie, (7.23) 

S(q)= / d4xe-iq-*S(x) = -m(q)/q2-ie. (7.24) 

Explicit formulas for the monomials n(g) and 11(g) are 
given in Eqs. (6.12), (6.13), and (6.5), or for ^ 3 in 
Table I of Ref. 1. 

VIII. GENERAL HELICITY AMPLITUDES 
AND THE LIMIT m - * 0 

The Feynman rules were given in Ref. 1 for incoming 
and outgoing massive particles having prescribed values 
for the z components of their spins. I t turns out, how­
ever, that the external-line wave functions are much 
simpler in the Jacob-Wick formalism,4 where initial and 
final states are labeled instead by the particle helicities. 
For m = 0 , of course, we have had no choice, since only 
the helicity amplitudes are physically meaningful. We 
will first derive the helicity wave functions for m> 0, and 
then use them to show how the Feynman rules given 
here for m=0 can be obtained by taking the limit m —» 0 
of the Feynman rules for positive m. 

According to the Feynman rules of Ref. 1, the wave 
function for a particle of spin j , Jz — v>, momentum p, 
and mass m, destroyed by <p<r(x), is 

^ ( ^ ; P , M ) = ( 2 O J ) - 1 / 2 ( 2 7 T ) - 3 / 2 

X[exp(-p.J<»0)] .M**-*, (8 . i) 
where 

sinh0= \p\/m. 

(It should be kept in mind that the index <r, which is of 
no direct physical significance, will appear on some 
other wave function or propagator, and eventually be 
summed over.) The corresponding wave function for a 
particle of definite helicity X is 

U.(x; p,X) = E ZV^CTOXC*; P,M) , (8.3) 

where R(p), as always, is the rotation that carries the z 
axis into the direction of p. Using (8.1) in (8.3) gives 

C/(r(^;p,X)=(2co)-1/2(27r)-3/2 

Xlexpi-fJ^D^tRip^rxe1*'* 
= (2co)-1/2(27r)-

3/2 

X{D^lR(p)2 expi-J^d)},^-* 

= (2w)-1 /2(27r)-3 /2^ f f X°* )[^(^)]^x^^-. (8.4) 

Furthermore we see from (8.2) that 

c r ^ = [ c o ( p ) + | p | / w ] - x . (8.5) 

In order to avoid w's appearing in the denominator of 
Uff for negative helicity, it will be convenient to re-
normalize all fields of mass m by multiplying them with 
a factor mK With this understanding, the wave function 
for a particle of spin j , helicity X, momentum p, and 
mass m, destroyed by <p<r(%), is 

U.(x; p,A) = (2w)-^(27r)-^D^lR(p)2 
Xw^ x (co+ |p | ) - x e^- : B . (8.6) 

The wave function for the creation of the same particle 
by <pj (x) is just the complex conjugate 

Xw ? ' + x ( co+ |p | ) - x 6-^^ . (8.7) 

The wave function for the creation by <pa(x) of the 
antiparticle with helicity X and spin p can be easily 
obtained in the same way from Eq. (5.4) of Ref. 1, by 
using the relations 

DW*lR(p)l = CDWZR(p)']C-1, 

We find that the antiparticle creation wave function is 

V.(x; p,X)= ( 2 C O ) - I / 2 ( 2 T T ) - 3 / 2 ( - ) - ^ X I > . , - X 0 * ) C ^ ^ ) ] 

Xw'-x(«+|p |)xer<p-.*, (8.8) 

and the wave function for destruction of the same 
antiparticle by <pf(x) is the complex conjugate 

VS(x; p,X)= (2«) -^ (2 1 r ) -» /» ( - ) -^Z>. ( -x ( ' ) T^t f ) ] 
Xm3'-^(co+\p\)^e+iP-x. (8.9) 

A massive particle can be created or destroyed in any 
helicity state by either the (j,0) field <p9(x) or the (0,j) 
field Xff(x). Inspection of the field X9(x) given in Eq. 
(6.9) of Ref. 1 shows that the wave functions corre­
sponding to (8.6)-(8.9) are given by replacing 0 by —0, 
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and supplying a sign (—)2?' for antipartides: 

U*(*\ P,X)= (2o>)-V*(2Tr)-mD^lR(p)-} 

[particle destroyed], (8.10) 

U.*(x', P,X)= (2co)-i/2(27r)-3/2D,x0,)T^(^)] 
Xw^-x(co+|p|)xer*p-* 

[particle created], (8.11) 

f , ( ^ ; ^ ) = ( 2 c o ) - 1 / 2 ( 2 7 r ) - 3 / 2 ( - ) ^ ^ i _ x ^ ) [ ^ ( ^ ) ] 
Xw ? '+ x(co+|p|)-xe-^- : E 

[antiparticle created], (8.12) 

? ,*(* ; p,X)= (2co)-i/2(27r)-^2(-)^Z) f f>„x (?- )T^^)] 
Xw , ,+x(w+|p|)-xer*-*p" 

[antiparticle destroyed]. (8.13) 

Now suppose that m—»0, or, more precisely, that 
|p|/w—»<*>. The only wave functions among (8.6)-
(8.13) that survive in this limit are (8.6), (8.7), (8.12), 
and (8.13) for X = - j j , and (8.8), (8.9), (8.10), and 
(8.11) for \ = + i - This agrees with the situation for 
m=0} in which case we know that <pa and <£>,+ can only 
create and destroy particles with \=—j and antipar-
ticles with X = + j , while X, and X,f only create and 
destroy particles with X = + i and antiparticles with 
X = — j . Furthermore, if we set X = — j in (8.6) or\=+j 
in (8.10) we see that these wave functions reduce for 
|p|/W—>co to the particle destruction wave function 
given for m = 0 by (7.7). The same agreement is ob­
tained on comparison of (8.7) and (8.11) with (7.8), 
(8.8), and (8.12) with (7.9), and (8.9), and (8.13) with 
(7.10). [The observation that particles described only 
by <pa(%) are difficult to create or destroy for |p|^>m in 
any helicity state other than X = — j is very familiar for 
electrons in beta decay.] 

The propagators for an internal <p or % line are given 
in Ref. 1 as 

S„> (x-y) = - i n , , * (-id)Ac(x-y; m), (8.14) 

Sca'(x-y) = -iTl(r^(-id)Ac(x-y;m). (8.15) 

[Recall that we are now using fields renormalized by a 
factor m}', so the factor m~2j' in Eq. (5.7) of Ref. 1 is 
absent here.] We see that the propagators given for 
m=0 by (7.18) and (7.19) are the limits respectively of 
(8.14) and (8.15) as m—>0. For m^O there is also a 
"transition propagator" between <£>, and X,/1", but it is 
proportional to m2i and disappears as m —» 0. 

In contrast, the Feynman rules for m = 0 could not be 
obtained as the limit as m—*0 of the corresponding 
rules for m>0, if we used one of the field types like 
(j/2,j/2) which are forbidden by the theorem of Sec. 
I I I . For example, it is well known that the propagator 
for a vector field has a longitudinal part which blows up 
as m~2 for m—>0; this is just our punishment for 
attempting to use the forbidden (J,J) field type for j=l 
particles of zero mass.3 

IX. T, C, AND P 

Time-reversal (T) and space inversion (P) are classi­
cally defined as transforming a particle of momentum p 
and helicity X into 

T |p ,X>oc | - p ,x>, (9.1) 

P | P , X > « | - P , - A > , (9-2) 

while charge conjugation (C) just changes all particles 
into antiparticles, with no change in p and X. However, 
in quantum mechanics there appear phases in (9.1) and 
(9.2), which we shall see are necessarily momentum-
dependent for massless particles. In order to get these 
phases right it is necessary first to define the action of T 
and P on our standard states |X) of momentum 
& = {0,0,K}, and then use the definition (2.31) of |p,X). 

We will define "standard phases" ??x(T) and ??x(P) by 

T|X>=„X*(TM2?J |X>, (9.3) 

P | X ) = ( - ) / + V * ( P ) f / [ i ? J [ - X ) , (9.4) 

where Rc is some fixed but arbitrary rotation such that 

£C{0,0,1} = { 0 , 0 , - 1 } , (9.5) 

so that U[RP{\\) is a state of momentum {0, 0, —K). 
[The factor (—)?'+x is extracted from )?x*(P) for con­
venience later.] In order to calculate the effect of T and 
P on | p,X) we need the well-known formulas 

T J / T - ^ - A , (9.6) 

TKiT-^Ki, (9.7) 

FJiP-^Ji, (9.8) 

VKiP-^-Ki. (9.9) 

[ I t is easy to check that (9.6)-(9.9) are consistent with 
the commutation relations (2.16)-(2.18), if we recall 
that T is antiunitary.] According to (2.31) and (4.7), 
the state | p,X) is 

| p , X > = C K / | p | ] v ^ [ : i 2 ^ ) ] « p [ - ^ ( | p | ) J r , ] | X > , ( 9 . 1 0 ) 

so therefore 

T |p ,X)=^*(T)[ K / |p | ]V2i7[ i ? (^)] 

xexpp<K|P|)#3;F!Mx), 
P|p,x>=(-)y+V*(P)[K/|p|]1/2f/Ci?(^)] 

Xexp[»*(|p|)^,MUj|-X>. 
But 

U-^Re-}KtU[Re-]=-Kt, 
and thus 

T | p,X> = *x*(T)[>/1 p | yi*UZR$)Rel 
X e x p [ - ^ ( | p | ) X 3 ] | X ) , (9.11) 

P | P , X ) = ( - ) ' + V * ( P ) C V I P | ] 1 / 2 ^ C ^ ( ^ C ] 
X e x p C - ^ ( | p | ) i T 3 ] | - X ) . (9.12) 

The rotation R(p)Rc carries the z axis into the direc­
tion of — p, and must therefore be the product oiR(-p) 
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times a rotation of $(p) degrees about the z axis 

U[_R(p)Rd= U[_R(-ffi expO(£) / 8 ] . (9.13) 

The angle $(p) depends on how we standardize Rc and 
R(p), but we will fortunately not need to calculate it, as 
it will cancel in the field transformation laws. Using 
(9.13) in (9.11) and (9.12), and recalling that Jz 

commutes with K3, we have at last 

T|p,X)=77x*(T) expp\dK£)]| - p , X), (9.14) 

P|P,X>= ( - ) * V ( P ) exp[-*X*0)] | - p , -X) . (9.15) 

These one-particle transformation equations can be 
translated immediately into transformation rules for the 
annihilation operator: 

Ta(p,X)T- 1-7 7x(T)exp[-^(^)>(-p,X), (9.16) 

P a ( p , X ) P - ^ ( - ) ^ x ( P ) 
XexppX<l>(p)>(-p, -X) . (9.17) 

The antiparticle operators will transform similarly, but 
perhaps with different "standard" phases 7?x(T) and 

Tb(p,\)T^=fjx(T) exp[- iX*(£)>(-p, X), (9.18) 

PKp ,X)P" 1 =( - )^x (P ) 

XexppX$(^)]K-p,-X). (9.19) 

And, of course, C just changes a's into b's and vice versa. 

<h(j>,\)C-i=n(C)b(j>,\), (9.20) 

CKp,X)C-1=77x(C)a(p,X). (9.21) 
The phases ?7x(T,C,P), *}X(T,C,P) are partly arbitrary,9 

partly determined by the structure of the Hamiltonian, 
and partly fixed by the specifically field-theoretic con­
siderations below. 

In order to calculate the effect of T, C, and P on the 
fields <pff(x) and Xa(x), it will be necessary to use the 
well-known reality property of the rotation matrices 

D^[R~]*=CD^[_R~]C~\ (9.22) 

where, with the usual phase conventions, 

CV,= ( - ) ' + ^ f - , = Cexp(wr/a
( '))>^ (9.23) 

We shall fix the rotation Rc introduced in Eq. (9.5) as a 
rotation of 180° about the y axis, such that 

D^[_Re2=C-1= (-)2>"C. (9.24) 

Another needed relation then follows from (9.13). 

D^[_R(pft 
= • ( - )** exp[~iX$^)]Z),,_x^>[^(-^)]. (9.25) 

The effect of T, C, and P on the fields (5.16) and 
(5.17) can now be easily determined by using (9.16)-

9 For a general discussion, see G. Feinberg and S. Weinberg, 
Nuovo Cimento 14, 571 (1959). 
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ff' 

Cx, (* )C- 1 =D i (C) ( - ) J 'Z :c^ - 1 ^ t (x ) , 

tv.(x)r-i=rl.J(je)x.(-x,sfi), 
Pxr(*)P-»=i?y(P)?,(-x>*p). 

(9.26) 

(9.27) 

(9.28) 

(9.29) 

(9.30) 

(9.31) 

In deriving (9.26)-(9.31) it is necessary to fix the 
antiparticle inversion phases as 

ijx(T) = „_x*(T), (9.32) 

iJx(C) = ^_x*(C), (9.33) 

ijx(P)=(-)2Vx*(P), (9.34) 

because any other choice of the rjx would result in the 
creation and annihilation parts of the field transforming 
with different phases, and would therefore destroy the 
possibility of simple transformation laws. 

It is interesting that the transformation rules (9.26)-
(9.31) turn out to be identical with those derived in 
Sec. 6 of Ref. 1 for the case of massive particles, though 
the derivation has been different in many respects. The 
same is true of the phase relations (9.32)-(9.34), except 
that the only correlated particle and antiparticle in­
version phases are those of opposite helicity. In par­
ticular, (9.34) tells us that a left- or right-handed 
particle plus a right- or left-handed antiparticle together 
have intrinsic parity 

*_x(P)ifc(P)=(-)", (9.35) 

while the intrinsic parity of a massless particle anti­
particle pair of the same helicity is not fixed by these 
general field-theoretic arguments. 

If a particle is its own antiparticle6 then we must set 

*(P,X) = *(P,X). (9.36) 

In this special case, the (jfi) and (0,j) fields are related 
by 

X , t ( i ) = Z C , ^ , ( * ) , (9.37) 
a' 

? / W = ( - ) , ' E C „ l x X * ) . (9.38) 

Also (9.36) requires that the antiparticle inversion 
phases T}\ be equal to the corresponding r)\, and therefore 
(9.32)-(9.34) provide relations between r/\ and T/_X: 

„x(T) = „_x*(T), (9.39) 

„x(C) = ,_x*(C), (9.40) 

Ux(P)=(-)«D-x*(P). (9.41) 
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However, there is still no necessity for any of these 
phases to be real. 

Observe that (9.17) and (9.19)-(9.21) make sense 
only if both the particle and its antiparticle each exist in 
both helicity states A = ± 7 . For a particle not identical 
with its antiparticle, this is now a part of the assumption 
of C or P invariance, whereas in the case of massive 
particles it followed directly from the Lorentz invariance 
of the S matrix. 

In contrast, T conservation leaves open the possibility 
that the particle exists in only one of the two helicity 
states, with an antiparticle of the opposite helicity. 
This is consistent with (9.26) and (9.27), which show 
that T does not mix <pff and Xa. The same is true of the 
combined inversion CP. 

CP^WP^C-1 

= yj(Qv-J(¥)X C „ - W ( ~ x , cfi), (9.42) 
a' 

CPx.OOP-'C-1 

= U-y(C>jy(P)Z C„ - X ' K - X , 3°) , (9.43) 
a' 

and of course it is also true of CPT. 

X. CHIRALITY AND RENORMALIZED MASS 

We have not made any distinction, either here or in 
Ref. 1, between the mass characterizing the free field 
and the mass of the physical particles. This was 
purposeful, because it is always possible and preferable 
to arrange that the unperturbed and the full Hamil-
tonians have the same spectrum. But there still remains 
the question: Under what circumstances will the physi­
cal particle mass in fact be zero? The classic conditions 
are gauge invariance or chirality [i.e., "75"] conserva­
tion. Gauge invariance is without content for the (jfi) 
and (0,y) fields discussed in this article, so we are led to 
consider the implications of chirality conservation. Our 
work in this section is entirely academic except for 
y = | , but even in this familiar case our conclusions are 
not quite in accord with public opinion. 

For definiteness we will understand chirality conser­
vation as invariance under a continuous transformation 

<pa(x) -> eu<pa(x); Xa(x) - » e~uXa(x). (10.1) 

In the 2 (2j+l)-component formalism10 we unite the 
(jfi) and (0,j) fields <pa(x) and Xa(x) into a (jfi)®(0,j) 
field \p(x)\ 

r<p(%)i 
*(*)= , J (la2) 

_______ LxW-l 
10 See Ref. 1. Many features of this formalism have been worked 

out independently in unpublished work by D. N. Williams. 

and we write the transformation (10.1) as 

\f/(x) —-> exp(ieyz)\l/(x). (10.3) 

< _°J-
There are other possible discrete or continuous chirality 
transformations, but our discussion will apply equally 
to all of them. 

The question, of whether chirality conservation im­
plies zero physical mass, can be asked on two different 
levels: 

(1) Suppose that Ho is chosen so the interaction 
representation fields <pff(x) and/or Xff(x) describe free 
particles of zero mass, and suppose that the interaction 
density 3C(#) is invariant under the transformation 
(10.1). Is the renormalized mass then zero in each order 
of perturbation theory? 

(2) Suppose that there exists a unitary operator 
which induces the transformation (10.1) on the Heisen-
berg representation fields, and which leaves the physical 
vacuum invariant. Can we then prove anything about 
the physical mass spectrum? 

Our answers to these two questions are (1) yes, and 
(2) not necessarily. Let us consider perturbation theory 
first. The bare momentum-space propagator of the <pff 

field is given by (7.23) as 

S(q) = -iU(q)/(q2-ie). (10.4) 

The exact propagator is 

S'(q) = S(q)+S(q)^(q)S'(q) 

= LS-Kq)-^(q)T^ (10.5) 

The (2j+l)X(2j+l) matrix 2<*>(g) is the sum of all 
proper diagrams with one <pa line coming in and one 
going out, with no propagators on these lines. Stripping 
away its external propagators changes the Lorentz 
transformation behavior of _w ( * } from that of <p «<?<,** to 
that of XCXV>*, so Lorentz invariance dictates its form as 

X^(q) = mff(,,(q)F(-q>). (10.6) 

Using (6.8) now gives the exact propagator (10.5) as 

-ill(q) 
S'(q) = . (10.7) 

[ l - ( - f f a ) ' F ( - « » ) ] [ ? « - i e ] 

We have not used chirality yet. In general the self-
energy part 2 (*} (q), and hence the function F(— q2), may 
have a pole at q2 = 0, due to graphs with one intermedi­
ate Xff line. But under any form of chirality conservation 
such graphs are forbidden. (For example, there is no 
neutrino X0 field.) Hence F(—q2) has no pole at q2 = 0, 
and therefore S' (q) does have such a pole, corresponding 
to a particle of zero renormalized mass. 
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Of course there may also be another particle with non­
zero mass m given by 

l = m2iF{m2). 

But such a particle would have to be unstable so m 
would lie off the physical sheet. 

Now let us turn to the second question. We assume 
that there exists a unitary chirality operator X(e) which 
transforms the Heisenberg representation fields into 

X(e)<P<r
H(x)X~1(e) = ei^H(x), (10.8) 

X(e)X9*(%)X-1(e) = e-i'X.B(x), (10.9) 

and which leaves the physical vacuum invariant. I t is 
certain that this assumption alone is not sufficient, in 
itself, to allow us to prove anything about physical 
particle masses, because we have not yet said anything 
to connect the fields <pa(x) and Xa{x) with each other. 
For instance, we might choose <pa(x) as (l+Y5)/2 times 
the electron field, and Xa(x) as (1-—Y5)/2 times the 
muon field. Then (10.8) and (10.9) are obviously 
satisfied if we choose the chirality operator as 

X(e) = exp{ie [electron number 

—muon number]}. (10.10) 

But we can hardly conclude from this that the electron 
or muon is massless. 

Clearly, the only information that can be gleaned 
solely from the existence of X(e) is just what would 
follow from any ordinary additive conservation law. 
Namely, the propagator of <pa(x) or Xa(x) can receive no 
contribution from any massive purely neutral one-
particle state that has no degeneracy beyond the 
(2y+l)-fold degeneracy associated with its spin.11 For 
any such state |p,/x) would have to be a chirality 
eigenstate 

x(e) |P > M>=^' |p,M> G * = - i , • • • , / ) , ( io . i l ) 

and thus 

< 0 | ^ H ( x ) | p , M ) = 0 unless £ = 1 , (10.12) 

<0|^Ht(*)|p,M> = 0 unless { = - 1 . (10.13) 

But CP or CPT conservation tells us that these two 
matrix elements are proportional to each other, and 
hence must both vanish. [Observe that we cannot 
forbid a massless purely neutral particle from contrib­
uting to the propagator of <pa(%) or Xa(x), since CP and 
CPT reverse its helicity, and its two helicity states 
might have opposite chirality. This is consistent with 
the remark6 that it is only a matter of convention 
whether we call a massless particle purely neutral or 
not.] 

11 This is an abbreviated version of a proof given by B. Touschek, 
in Lectures on Field Theory and the Many-Body Problem, edited by 
E. R. Caianiello (Academic Press Inc., New York, 1961), p. 173. 
It is not clear from Touschek's article whether he feels that this 
theorem implies that the neutrino cannot have finite mass. As 
indicated herein, I do not. 

Unfortunately this theorem offers no proof that the 
accepted chirality-conserving weak interactions do not 
give a massive neutrino, with a distinct massive 
antineutrino. I t should be kept in mind that we cannot 
decide just by looking at a Lagrangian whether the 
physical one-particle states will be purely neutral or not. 
Of course, any massless particle can be called purely 
neutral, but this is not relevant if what we want is to 
prove the absence of massive particles. 

We can say somewhat more about the mass spectrum 
if we are willing to assume parity conservation [which 
links <pff(x) with Xff(x) by (9.30) and (9.31)] as well as 
chirality conservation. In this case the propagator of 
<p<r(x) or Xa{x) can receive no contribution from any 
massive one-particle state that has no degeneracy, be­
yond the (2,;+l)-fold degeneracy associated with its 
spin, and an additional 2-fold degeneracy if it happens 
to have a distinct antiparticle. For it would then be 
possible to form a one-particle chirality eigenstate | p,/j): 

X(e)|p,M> = exp(t€£)|p,Ai> (10.14) 

by taking | p,ju) as either the one-particle state itself or 
some linear combination of it and its charge conjugate. 
Lorentz invariance requires that 

<0| ^ W | p , / x ) = i V , ( 2 c o ) - ^ ^ ^ [ L ( p ) ] ^ P - , (10.15) 

( 0 | X ^ ( x ) | p , M ) = ^ x ( 2 c o ) - 1 ^ M ^ ) [ L ( p ) > ^ x . (10.16) 

Parity conservation tells us further that 

\NV\ = \NX\^N. (10.17) 

This is just to say that the matrix element of the 
2(2y+l)-component field \f/(x) satisfies the generalized 
Dirac equation [Eq. (7.19) of Ref. 1] , which is to be 
expected under the assumption of parity conservation. 
But (10.8) and (10.14) give N=0 unless { = + 1, while 
(10.9) and (10.14) give N—0 unless £= — 1, so we may 
conclude that N=0. Again, this proof does not apply for 
zero mass, because the two helicity states are uncon­
nected by space rotations and hence may have differ­
ent £'s. 

[ I t might at first sight appear that the free fields 
constructed in Ref. 1 provide a counter-example to this 
proof. In the absence of interactions they certainly 
describe nondegenerate particles with nonvanishing bare 
and physical masses, and yet there is no coupling that 
violates either parity or chirality. The trouble with this 
argument is that no operator X(e) can be constructed; 
in fact Eqs. (7.23) and (7.25) of Ref. 1 show that 

(T{ipv(x),xS(y)})Q9*0. (10.18) 

This point is more transparent in the conventional 
language in which we would just say that the free-field 
Lagrangian does not conserve chirality. As m —> 0, 
(10.18) vanishes as m2\ and for m = 0 it is easy to con­
struct X(e) explicitly.] 

The last proof is of some interest, because it shows 
that unless the vacuum or electron is degenerate, the 

io.il
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mass of the electron cannot arise entirely from electro­
magnetic interactions, which conserve both parity and 
chirality. But it is useless for the neutrino, and we are 
forced to conclude that only perturbation theory can 
account for its zero mass. 

XI. CONCLUSIONS 

The Feynman rules for massless particles in the 
(2y+l)-component formalism are identical with those 
derived in Ref. 1 for particles of mass m>0. It is only 
necessary to pass to the limit m —> 0 to obtain the cor­
rect propagators for internal lines, and wave functions 
for external lines. Also, the various possible invariant 
Hamiltonians 3C(#) can be constructed out of the fields 
(Paix) and Xff(#), with no distinction between massive 
and massless particle fields. 

Furthermore, the transformation properties of <pa{x) 
and X(T(x) under T, C, and P are the same for m>0 and 
m = 0. If P and/or C are conserved it is very convenient 
to unite <pa(%) and Xff(x) into a 2(2j+l)-component 

I. INTRODUCTION 

IN a previous paper,1 the possible effects of strong 
interactions on the peratization theory of Feinberg 

and Pais2 were studied in a simplified model where the 
strong interactions acted through modifications only of 
the baryon vertices and propagators. It was shown 
there that the final "peratized" nuclear vector /3-decay 
coupling strength Gpv is no longer equal to the "pera­
tized" ju-decay coupling strength, G> if the vector 
current is conserved. In this paper, we wish to present 

* Supported in part by a grant from the National Science 
Foundation. 

f Boese predoctoral fellow. 
1 N. P. Chang, Phys. Rev. 133, B454 (1964). 
2 G. Feinberg and A. Pais, Phys. Rev. 131, 2724 (1963); 133, 

B477 (1964). 

field ip(%), which transforms according to the reducible 
(jfi)@(0,j) representation; for j = \ this yields the 
Dirac formalism, while for j=l it corresponds to the 
union of the irreducible fields E±iB into a six-vector 
{E,B}. Here again there is no distinction to be made 
between zero and nonzero mass, so we need not repeat 
here the details of the 2 (2j+l)-component formalism10 

constructed in Ref. 1. 
We have seen no hint of anything like gauge invari-

ance in our work so far. In fact, the really significant 
distinctions between field theories for zero and nonzero 
mass arise when we try to go beyond the (2j-\-l)- or 
2(27+l)-component formalisms. In particular, for 
m>0 there is no difficulty in constructing tensor fields 
transforming according to the (j/2,j/2) representations, 
while for m = 0 this is strictly forbidden by the theorem 
proven in Sec. III. We will see in a forthcoming article 
that the attempt to evade this prohibition and yet keep 
the S matrix Lorentz-invariant yields all the results 
usually associated with gauge invariance. 

an argument which shows that the same power counting 
conclusion holds when all possible effects of strong 
interactions, within the framework of peratization 
theory, are taken into account. Furthermore, the very 
nature of our argument shows that the same conclusion 
holds even when one includes, in peratization theory, 
the sum over the crossed ladder graphs so long as power 
counting is valid. That is to say, if we define the 
peratized (crossed+uncrossed ladder graphs) ju-decay 
constant by G>= (g2A^2)(l~v)> then the corresponding 
peratized nuclear vector /3-decay constant is Gpv 

— (g2/m2)(l—Zrf), where Z is the strong interaction 
nucleon renormalization factor. Thus, unless peratiza­
tion vanishes (?? = 0) when all graphs are included, the 
situation remains that G^Gf when the vector current 
is conserved. This makes it hard to understand the 
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